АНАЛИЗ УСТОЙЧИВОСТИ МНОГОУРОВНЕВОГО ЛЕССОВОГО СКЛОНА ПСЕВДОСТАТИЧЕСКИМ МЕТОДОМ ПРИ ВОЗДЕЙСТВИИ ЗЕМЛЕТРЯСЕНИЯ Influencing Factors Stability Analysis of Multistage Loess Slope under Earthquake Action Based on Pseudo-Static Method

Shuaihua Ye, Ruihuan Zhang

Аннотация


Анализируется устойчивость многоуровневых лессовых склонов при воздействии землетрясения на основе теории предельного равновесия и псевдостатического подхода. Работа посвящена математическому моделированию с целью определения наиболее вероятных поверхностей скольжения и определения минимального коэффициента запаса прочности для всех возможных режимов разрушения при меньшем объеме выполнения расчетных итераций. Кроме описания математической и физической составляющих метода приводится сравнение результатов относительно классических методов (Бишоп, Янбу, Моргенштерн-Прайс). Разница между полученными коэффициентами устойчивости не составила более 5%, что подтверждает адекватность предложенного метода. Полученные численные зависимости аргументированы, кроме того, показана сходимость результатов. На примерах обоснована целесообразность использования этого метода.


Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering», vol.60, No.4


Литература


Y. R. Zheng, H. L. Ye, and R. Q. Huang, “Analysis and discussion of failure mechanism and fracture surface of slope under earthquake,” Chin. J. Rock Mech. Eng., 28(08), 1714-1723 (2009).

C. Xu, and X. W. Xu, “Construction of basic earthquake-triggered landslides dataset for several large earthquake events at the beginning of the 2 century,” Seism. Geol., 36(01), 90-104 (2014). DOI:10.3969/j.issn.0253-4967.2014.02.008

S. E. Hough, J. R. Altidor, D. Anglade, D. Given, M. G. Janvier, J. Z. Maharrey, M. Meremonte, B. S-L. Mildor, and C. Prepetit, “Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake,” Nature Geosci., 3(11), 778–782 (2010). DOI:10.1038/ngeo988

M. Karray, M. N. Hussien, M. C. Delisle, and C. Ledous, “Framework to assess pseudo-static approach for seismic stability of clayey slopes,” Can. Geotech. J., 55(12), 1860-1876 (2018). DOI:10.1139/cgj-2017-0383

C. W. Yang, J. J. Zhang, X. Fu, C. B. Zhu, and J. W. Bi, “Improvement of pseudo-static method for slope stability analysis,” J. Mount. Sci., 11(3), 625-633 (2014). DOI:10.1007/s11629-013-2756-8

Y. L. Cui, A. J. Liu, C. Chong, and J. Zheng, “A modified newmark method for calculating permanent displacement of seismic slope considering dynamic critical acceleration,” Advances in Civil Engineering, 2019(3), 1-10 (2019). DOI:10.1155/2019/9782515

J. Lngles, J. Darrozes, and J. C. Soula, “Effects of the vertical component of ground shaking on earthquake-induced landslide displacements using generalized Newmark analysis,” Eng. Geol, 86(2-3), 134-147 (2006). DOI:10.1016/j.enggeo.2006.02.018

X. L. Chen, R. X. Gao, and W. W. Gong, “Time history analysis method for seismic reliability of bedding rock slopes based on Newmark-β method,” China Journal of Highway and Transport, 30(07), 33-40 (2017). DOI:10.3969/j.issn.1001-7372.2017.07.005

H. L. Liu, K. Fu, and Y. F. Gao, “Time history analysis method of slope seismic stability,” Rock Soil Mech., 24(04), 553-556, (2003). DOI:10.3969/j.issn.1000-7598.2003.04.013

S. F. Qiao, and C. Wang, “Study on safety factor calculation and stability evaluation of dynamic slope based on strength reduction method,” Fresenius Environmental Bulletin, 28(7), 5301-5311, (2019).

G. Q. Chen, R. Q. Huang, Q. Xu, T. B. Li, and M. L. Zhu, “Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method,” J. Mount. Sci., 10(4), 532-540 (2013). DOI:10.1007/s11629-013-2367-4

T. Triantafyllidis, and C. E. Grandas-Tavera, “Quasi-static approach for stability analysis of slopes under seismic excitation using non-linear wave propagation,” Bautechnik, 90(1), 51-62 (2013). DOI:10.1002/bate.201200050

China Institute of Hydropower and Hydraulic Research, SL203-97 Specifications for seismic design of hydraulic structures, China Water Power Press, Beijing (1997).

L. Li, Z. Q. Kang, G. H. Sun, and Y. N. Zhang, “Stability Analysis of Waste Dump Slopes of Sanyou Mine Under the Effect of Earthquake,” 2016 International Conference on Mechanics and Materials Science (MMS2016), (2017). DOI:10.1142/9789813228177_0100

Q. F. Lv, Z. Z. Yin, S. H. Wang, and F. L. Ji, “Improvement of pseudo-static method for slope stability analysis,” Rock Soil Mech., 26(S1), 35-38 (2005). DOI:10.16285/j.rsm.2005.s1.008

Z. Li, and M. T. Luan, “Pseudo-static stability calculation of earth and rockfill dams using shear strength reduction finite element method,” Rock Soil Mech., 31(05), 1503-1508+1516 (2010). DOI:10.16285/j.rsm.2010.05.019

Z. Li, and Y. P. Zhu, “Search model of slip surface and stability analysis of multi-step slope,” Chin. J. Rock Mech. Eng., 25(S1), 2841-2847 (2006). DOI:10.3321/j.issn:1000-6915.2006.z1.037

Y. C. Cheng, and P. Jiang, “Sensitive Analysis of Factors Affecting Soil Slope Stability,” Appl. Mech. Mater., 170-173, 1072-1075 (2012). DOI:10.4028/www.scientific.net/AMM.170-173.1072

V. Navarro, A. Yustres, M. Candel, J. López, and E. Castillo, “Sensitivity analysis applied to slope stabilization at failure,” Comput. Geotech., 37(7-8): 837-845 (2010). DOI:10.1016/j.compgeo.2010.03.010

S. H. Ye, and A. P. Huang , “Sensitivity Analysis of Factors Affecting Stability of Cut and Fill Multistage Slope Based on Improved Grey Incidence Model,” Soil Mech. Found. Eng., 57(1), 8-17 (2020). DOI:10.1007/s11204-020-09631-w

J. C. Xu, Q. W. Ren, and Z. Z. Shen, “Sensitivity analysis of the influencing factors of slope stability based on LS-SVM,” Geom. Eng., 13(3), 447-458 (2017). DOI:10.12989/gae.2017.13.3.000

Z. Y. Chen, and C. M. Shao, “The use of the method of optimization for minimizing safety factors in slope stability analysis,” Chin. J. Geotech. Eng., 10(04), 1-13 (1988).

L. X. Jin, and Q. X. Feng, “Improved radial movement optimization to determine the critical failure surface for slope stability analysis” Environ. Earth Sci., 77(16), 564 (2018). DOI:10.1007/s12665-018-7742-6

P. Tan, J. S. Qian, and G. Yang, “Orthogonality Analysis Method of Sensibility on Factor of Sand Embankment Slope Stability,” Appl. Mech. Mater., 638-640, 1171-1176 (2014). DOI:10.4028/www.scientific.net/AMM.638-640.1171

B. G. He, Q. Gao, and F. Liu, “Orthogonal analysis and numerical simulation on influential factors of freeway slope stability,” Chin. J. Geotech. Eng., 27(06), 716-719 (2005). DOI:10.3321/j.issn:1000-4548.2005.06.022

L. Cao, S. G. Qian, H. M. Wang, and J. F. Huang, “Analysis on Slope Stability Based on Factor Sensitivity,” Appl. Mech. Mater., 475-476, 1528-1533 (2014). DOI:10.4028/www.scientific.net/AMM.475-476.1528


Ссылки

  • На текущий момент ссылки отсутствуют.