ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВНУТРЕННЕЙ ЭРОЗИИ, ВЫЗВАННОЙ ПРОСАЧИВАНИЕМ, В ПЕСЧАНО-КАОЛИНИТОВЫХ ГРУНТАХ Experimental investigations of seepage-induced internal erosion in sand-kaolinite soils with different clay fractions

Liqun Guo, Biao Li, Minan Fang, Zhebo Ren, Xingxin Chen, Jiangmingyi Chen

Аннотация


Внутренняя эрозия песчано-глинистых грунтов, вызванная просачиванием, может привести к внутренней нестабильности и авариям на прибрежных гидротехнических сооружениях. Из-за сложности количественного определения размытия глинистых минералов во время испытаний на просачивание процесс эрозии в песчано-глинистых грунтах не был изучен. В работе для исследования эрозии использовано новое трехосное устройство для моделирования трехмерного напряженного состояния. Испытания проводились на искусственном песчаном грунте с различным содержанием каолинита и при различных гидравлических градиентах. Предложена модель структурного состояния для количественного описания эрозии в образцах с различным содержанием глины.


Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.62, No.2


Литература


Bai, B., T. Xu, and Z. Guo. 2016. An experimental and theoretical study of the seepage migration of suspended particles with different sizes. Hydrogeology Journal 24: 2063–2078. https://doi.org/10.1007/s10040-016-1450-7

Bai, B., D. Rao, T. Chang, and Z. Guo. 2019. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. Journal of Hydrology 578: 124080.

https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124080

Bendahmane, F., D. Marot, and A. Alexis. 2008. Experimental parametric study of suffusion and backward Erosion. Journal of Geotechnical and Geoenvironmental Engineering 134: 57-67, doi: doi:10.1061/(ASCE)1090-0241(2008)134:1(57).

Chang, D., and L. Zhang. 2011. A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal 34:579-589, doi: 10.1520/GTJ103889.

Das, B. M. 1997. Advanced soil mechanics. Taylor & Francis, Washington, DC.

Danka, J., and L. M. Zhang. 2015. Dike failure mechanisms and breaching parameters. Journal of Geotechnical and Geoenvironmental Engineering 141 (9):04015039. doi:10.1061/(asce)gt.1943-5606.0001335

Fannin, R.J., and P. Slangen. 2014. On the distinct phenomena of suffusion and suffusion. Geotechnique Letters 4:289-294, doi: 10.1680/geolett.14.00051.

Fawad, M., N.H. Mondol, J. Jahren, K. Bjorlykke. 2010. Microfabric and rock properties of experimentally compressed silt-clay mixtures. Marine and Petroleum Geology 27:1698-1712, doi: 10.1016/j.marpetgeo.2009.10.002.

Guo, S., Y. Shao, T. Zhang, D.Z. Zhu, and Y. Zhang. 2013. Physical modeling on sand erosion around defective sewer pipes under the influence of groundwater. Journal of Hydraulic Engineering 139: 1247-1257, doi: doi:10.1061/(ASCE)HY.1943-7900.0000785.

Hicher, P.Y., D. Marot, and L. Sibille. 2017. Chapter 9 - Internal erosion. F. Nicot & O. Millet. Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics, ISTE - Elsevier, pp. 291-334, 978-1-78548-278-6.

Ke, L., and A. Takahashi. 2014. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations 54: 713-730, doi: https://doi.org/10.1016/j.sandf.2014.06.024.

Koltuk, S., J. Song, R. Iyisan, and R. Azzam. 2019. Seepage failure by heave in sheeted excavation pits constructed in stratified cohesionless soils. Frontiers of Structural and Civil Engineering 13: 1415-1431, doi: 10.1007/s11709-019-0565-z.

Kwak, T.Y., S.I. Woo, J. Kim, and C.K. Chung. 2019. Model test assessment of the generation of underground cavities and ground cave-ins by damaged sewer pipes. Soils and Foundations 59:586-600, doi: https://doi.org/10.1016/j.sandf.2018.12.011.

Li, B., and R.C.K Wong. 2016. Quantifying structural states of soft mudrocks. Journal of Geophysical Research: Solid Earth 121: 3324-3347, doi: 10.1002/2015JB012454.

Li, B., and R.C.K Wong. 2017a. A mechanistic model for anisotropic thermal strain behavior of soft mudrocks. Engineering Geology 228: 146-157, doi: http://dx.doi.org/10.1016/j.enggeo.2017.08.008.

Li, B., and R.C.K Wong. 2017b. Modeling anisotropic static elastic properties of soft mudrocks with different clay fractions. Geophysics 82: MR27-MR37, doi: 10.1190/geo2015-0575.1.

Li, B., R.C.K Wong, and S. Heidari. 2018. A modified Kozeny-Carman model for estimating anisotropic permeability of soft mudrocks. Marine and Petroleum Geology 98: 356-368, doi: https://doi.org/10.1016/j.marpetgeo.2018.08.034.

Minella, J.P.G., G.H. Merten, J.M. Reichert, and R.T. Clarke. 2008. Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrological Processes 22: 1819-1830, doi: https://doi.org/10.1002/hyp.6763.

Mitchell, J.K., and K. Soga. 2005. Fundamentals of soil behavior, 3rd Edition. J. Wiley & Sons, New York.

Moffat, R., R.J.J. Fannin, and S. Garner. 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Canadian Geotechnical Journal 48: 399-412, doi: 10.1139/t10-071.

Mondol, N.H., K. Bjorlykke, and J. Jahren. 2008. Experimental compaction of clays: relationship between permeability and petrophysical properties in mudstones. Petroleum Geoscience 14: 319-337, doi: 10.1144/1354-079308-773.

Pavanelli, D., and A. Bigi. 2005. Indirect methods to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids. Biosystems Engineering 90: 75-83, doi: https://doi.org/10.1016/j.biosystemseng.2004.09.001.

Pfannkuche, J., and A. Schmidt. 2003. Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures. Hydrological Processes 17: 1951-1963, doi: https://doi.org/10.1002/hyp.1220.

Poesen, J. 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43: 64-84, doi: https://doi.org/10.1002/esp.4250.

Qiu, J., Y. Lu, J. Lai, Y. Zhang, T. Yang, and K. Wang. 2020. Experimental study on the effect of water gushing on loess metro tunnel. Environmental Earth Sciences 79: 1-9, doi: 10.1007/s12665-020-08995-4.

Rice, J. D., and J. M. Duncan. 2010. Findings of case histories on the longterm performance of seepage barriers in dams. Journal of Geotechnical and Geoenvironmental Engineering 136 (1):2–15. doi:10.1061/(asce)gt.1943-5606.0000175

Richards, K.S., and K.R. Reddy. 2012. Experimental investigation of initiation of backward erosion piping in soils. Geotechnique 62: 933-942, doi: 10.1680/geot.11.P.058.

Schneider, J., P.B. Flemings, R.J. Day-Stirrat, and J.T. Germaine. 2011. Insights into pore-scale controls on mudstone permeability through resedimentation experiments. Geology 39: 1011-1014, doi: 10.1130/g32475.1.

Tomlinson, S.S., and Y.P. Vaid. 2000. Seepage forces and confining pressure effects on piping erosion. Canadian Geotechnical Journal 37: 1-13, doi: 10.1139/t99-116.

Wan, C.F., and R. Fell. 2008. Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations. Journal of Geotechnical and Geoenvironmental Engineering 134: 401-407, doi: doi:10.1061/(ASCE)1090-0241(2008)134:3(401).

Yang, K.H., and J.Y. Wang. 2017. Experiment and statistical assessment on piping failures in soils with different gradations. Marine Georesources & Geotechnology, 35(4), 512–527. https://doi.org/10.1080/1064119X.2016.1213338

Ye, Z., and H. Liu. 2020. Modeling the Effects of Internal Erosion on the Structural Damage of a Shield Tunnel. International Journal of Geomechanics 20:04020053, doi: doi:10.1061/(ASCE)GM.1943-5622.0001691.

Zhang, F., T. Wang, F. Liu, M. Peng, J. Furtney, and L. Zhang. 2020. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils. Computers and Geotechnics 124:103617. https://doi.org/10.1016/j.compgeo.2020.103617

Zhou, Z.Q., P.G Ranjith, and S.C. Li. 2018. An experimental testing apparatus for study of suffusion of granular soils in geological structures. Tunnelling and Underground Space Technology 78: 222-230, doi: https://doi.org/10.1016/j.tust.2018.05.003.


Ссылки

  • На текущий момент ссылки отсутствуют.